Vasily Davydov 25545eb2ea root: init project
Adding basic board repos, main
2022-09-14 11:05:10 +03:00

404 lines
11 KiB
C

/*
* @brief LPC15XX System clock control functions
*
* Copyright(C) NXP Semiconductors, 2013
* All rights reserved.
*
* Software that is described herein is for illustrative purposes only
* which provides customers with programming information regarding the
* LPC products. This software is supplied "AS IS" without any warranties of
* any kind, and NXP Semiconductors and its licensor disclaim any and
* all warranties, express or implied, including all implied warranties of
* merchantability, fitness for a particular purpose and non-infringement of
* intellectual property rights. NXP Semiconductors assumes no responsibility
* or liability for the use of the software, conveys no license or rights under any
* patent, copyright, mask work right, or any other intellectual property rights in
* or to any products. NXP Semiconductors reserves the right to make changes
* in the software without notification. NXP Semiconductors also makes no
* representation or warranty that such application will be suitable for the
* specified use without further testing or modification.
*
* Permission to use, copy, modify, and distribute this software and its
* documentation is hereby granted, under NXP Semiconductors' and its
* licensor's relevant copyrights in the software, without fee, provided that it
* is used in conjunction with NXP Semiconductors microcontrollers. This
* copyright, permission, and disclaimer notice must appear in all copies of
* this code.
*/
#include "chip.h"
/*****************************************************************************
* Private types/enumerations/variables
****************************************************************************/
/*****************************************************************************
* Public types/enumerations/variables
****************************************************************************/
/*****************************************************************************
* Private functions
****************************************************************************/
/* Compute a PLL frequency */
STATIC uint32_t Chip_Clock_GetPLLFreq(uint32_t PLLReg, uint32_t inputRate)
{
uint32_t msel = ((PLLReg & 0x3F) + 1);
return inputRate * msel;
}
/* Return a PLL input (common) */
STATIC uint32_t Chip_Clock_GetPLLInClockRate(uint32_t reg)
{
uint32_t clkRate;
switch ((CHIP_SYSCTL_PLLCLKSRC_T) (reg & 0x3)) {
case SYSCTL_PLLCLKSRC_IRC:
clkRate = Chip_Clock_GetIntOscRate();
break;
case SYSCTL_PLLCLKSRC_MAINOSC:
clkRate = Chip_Clock_GetMainOscRate();
break;
default:
clkRate = 0;
}
return clkRate;
}
/*****************************************************************************
* Public functions
****************************************************************************/
/* Return System PLL input clock rate */
uint32_t Chip_Clock_GetSystemPLLInClockRate(void)
{
return Chip_Clock_GetPLLInClockRate(LPC_SYSCTL->SYSPLLCLKSEL);
}
/* Return System PLL output clock rate */
uint32_t Chip_Clock_GetSystemPLLOutClockRate(void)
{
return Chip_Clock_GetPLLFreq(LPC_SYSCTL->SYSPLLCTRL,
Chip_Clock_GetSystemPLLInClockRate());
}
/* Return USB PLL input clock rate */
uint32_t Chip_Clock_GetUSBPLLInClockRate(void)
{
return Chip_Clock_GetPLLInClockRate(LPC_SYSCTL->USBPLLCLKSEL);
}
/* Return USB PLL output clock rate */
uint32_t Chip_Clock_GetUSBPLLOutClockRate(void)
{
return Chip_Clock_GetPLLFreq(LPC_SYSCTL->USBPLLCTRL,
Chip_Clock_GetUSBPLLInClockRate());
}
/* Return SCT PLL input clock rate */
uint32_t Chip_Clock_GetSCTPLLInClockRate(void)
{
return Chip_Clock_GetPLLInClockRate(LPC_SYSCTL->SCTPLLCLKSEL);
}
/* Return SCT PLL output clock rate */
uint32_t Chip_Clock_GetSCTPLLOutClockRate(void)
{
return Chip_Clock_GetPLLFreq(LPC_SYSCTL->SCTPLLCTRL,
Chip_Clock_GetSCTPLLInClockRate());
}
/* Return main A clock rate */
uint32_t Chip_Clock_GetMain_A_ClockRate(void)
{
uint32_t clkRate = 0;
switch (Chip_Clock_GetMain_A_ClockSource()) {
case SYSCTL_MAIN_A_CLKSRC_IRC:
clkRate = Chip_Clock_GetIntOscRate();
break;
case SYSCTL_MAIN_A_CLKSRCA_MAINOSC:
clkRate = Chip_Clock_GetMainOscRate();
break;
case SYSCTL_MAIN_A_CLKSRCA_WDTOSC:
clkRate = Chip_Clock_GetWDTOSCRate();
break;
default:
clkRate = 0;
break;
}
return clkRate;
}
/* Return main B clock rate */
uint32_t Chip_Clock_GetMain_B_ClockRate(void)
{
uint32_t clkRate = 0;
switch (Chip_Clock_GetMain_B_ClockSource()) {
case SYSCTL_MAIN_B_CLKSRC_MAINCLKSELA:
clkRate = Chip_Clock_GetMain_A_ClockRate();
break;
case SYSCTL_MAIN_B_CLKSRC_SYSPLLIN:
clkRate = Chip_Clock_GetSystemPLLInClockRate();
break;
case SYSCTL_MAIN_B_CLKSRC_SYSPLLOUT:
clkRate = Chip_Clock_GetSystemPLLOutClockRate();
break;
case SYSCTL_MAIN_B_CLKSRC_RTC:
clkRate = Chip_Clock_GetRTCOscRate();
break;
}
return clkRate;
}
/* Set main system clock source */
void Chip_Clock_SetMainClockSource(CHIP_SYSCTL_MAINCLKSRC_T src)
{
uint32_t clkSrc = (uint32_t) src;
if (clkSrc >= 4) {
/* Main B source only, not using main A */
Chip_Clock_SetMain_B_ClockSource((CHIP_SYSCTL_MAIN_B_CLKSRC_T) (clkSrc - 4));
}
else {
/* Select main A clock source and set main B source to use main A */
Chip_Clock_SetMain_A_ClockSource((CHIP_SYSCTL_MAIN_A_CLKSRC_T) clkSrc);
Chip_Clock_SetMain_B_ClockSource(SYSCTL_MAIN_B_CLKSRC_MAINCLKSELA);
}
}
/* Returns the main clock source */
CHIP_SYSCTL_MAINCLKSRC_T Chip_Clock_GetMainClockSource(void)
{
CHIP_SYSCTL_MAIN_B_CLKSRC_T srcB;
uint32_t clkSrc;
/* Get main B clock source */
srcB = Chip_Clock_GetMain_B_ClockSource();
if (srcB == SYSCTL_MAIN_B_CLKSRC_MAINCLKSELA) {
/* Using source A, so return source A */
clkSrc = (uint32_t) Chip_Clock_GetMain_A_ClockSource();
}
else {
/* Using source B */
clkSrc = 4 + (uint32_t) srcB;
}
return (CHIP_SYSCTL_MAINCLKSRC_T) clkSrc;
}
/* Return main clock rate */
uint32_t Chip_Clock_GetMainClockRate(void)
{
uint32_t clkRate;
if (Chip_Clock_GetMain_B_ClockSource() == SYSCTL_MAIN_B_CLKSRC_MAINCLKSELA) {
/* Return main A clock rate */
clkRate = Chip_Clock_GetMain_A_ClockRate();
}
else {
/* Return main B clock rate */
clkRate = Chip_Clock_GetMain_B_ClockRate();
}
return clkRate;
}
/* Return ADC asynchronous clock rate */
uint32_t Chip_Clock_GetADCASYNCRate(void)
{
uint32_t clkRate = 0;
switch (Chip_Clock_GetADCASYNCSource()) {
case SYSCTL_ADCASYNCCLKSRC_IRC:
clkRate = Chip_Clock_GetIntOscRate();
break;
case SYSCTL_ADCASYNCCLKSRC_SYSPLLOUT:
clkRate = Chip_Clock_GetSystemPLLOutClockRate();
break;
case SYSCTL_ADCASYNCCLKSRC_USBPLLOUT:
clkRate = Chip_Clock_GetUSBPLLOutClockRate();
break;
case SYSCTL_ADCASYNCCLKSRC_SCTPLLOUT:
clkRate = Chip_Clock_GetSCTPLLOutClockRate();
break;
}
return clkRate;
}
/**
* @brief Set CLKOUT clock source and divider
* @param src : Clock source for CLKOUT
* @param div : divider for CLKOUT clock
* @return Nothing
* @note Use 0 to disable, or a divider value of 1 to 255. The CLKOUT clock
* rate is the clock source divided by the divider. This function will
* also toggle the clock source update register to update the clock
* source.
*/
void Chip_Clock_SetCLKOUTSource(CHIP_SYSCTL_CLKOUTSRC_T src, uint32_t div)
{
uint32_t srcClk = (uint32_t) src;
/* Use a clock A source? */
if (src >= 4) {
/* Not using a CLKOUT A source */
LPC_SYSCTL->CLKOUTSEL[1] = srcClk - 4;
}
else {
/* Using a clock A source, select A and then switch B to A */
LPC_SYSCTL->CLKOUTSEL[0] = srcClk;
LPC_SYSCTL->CLKOUTSEL[1] = 0;
}
LPC_SYSCTL->CLKOUTDIV = div;
}
/* Enable a system or peripheral clock */
void Chip_Clock_EnablePeriphClock(CHIP_SYSCTL_CLOCK_T clk)
{
uint32_t clkEnab = (uint32_t) clk;
if (clkEnab >= 32) {
LPC_SYSCTL->SYSAHBCLKCTRL[1] |= (1 << (clkEnab - 32));
}
else {
LPC_SYSCTL->SYSAHBCLKCTRL[0] |= (1 << clkEnab);
}
}
/* Disable a system or peripheral clock */
void Chip_Clock_DisablePeriphClock(CHIP_SYSCTL_CLOCK_T clk)
{
uint32_t clkEnab = (uint32_t) clk;
if (clkEnab >= 32) {
LPC_SYSCTL->SYSAHBCLKCTRL[1] &= ~(1 << (clkEnab - 32));
}
else {
LPC_SYSCTL->SYSAHBCLKCTRL[0] &= ~(1 << clkEnab);
}
}
/* Returns the system tick rate as used with the system tick divider */
uint32_t Chip_Clock_GetSysTickClockRate(void)
{
uint32_t sysRate, div;
div = Chip_Clock_GetSysTickClockDiv();
/* If divider is 0, the system tick clock is disabled */
if (div == 0) {
sysRate = 0;
}
else {
sysRate = Chip_Clock_GetMainClockRate() / div;
}
return sysRate;
}
/* Get UART base rate */
uint32_t Chip_Clock_GetUARTBaseClockRate(void)
{
uint64_t inclk;
uint32_t div;
div = (uint32_t) Chip_Clock_GetUARTFRGDivider();
if (div == 0) {
/* Divider is 0 so UART clock is disabled */
inclk = 0;
}
else {
uint32_t mult, divmult;
/* Input clock into FRG block is the divided main system clock */
inclk = (uint64_t) (Chip_Clock_GetMainClockRate() / div);
divmult = LPC_SYSCTL->FRGCTRL & 0xFFFF;
if ((divmult & 0xFF) == 0xFF) {
/* Fractional part is enabled, get multiplier */
mult = (divmult >> 8) & 0xFF;
/* Get fractional error */
inclk = (inclk * 256) / (uint64_t) (256 + mult);
}
}
return (uint32_t) inclk;
}
/* Set UART base rate */
uint32_t Chip_Clock_SetUARTBaseClockRate(uint32_t rate, bool fEnable)
{
uint32_t div, inclk;
/* Input clock into FRG block is the main system cloock */
inclk = Chip_Clock_GetMainClockRate();
/* Get integer divider for coarse rate */
div = inclk / rate;
if (div == 0) {
div = 1;
}
/* Approximated rate with only integer divider */
Chip_Clock_SetUARTFRGDivider((uint8_t) div);
if (fEnable) {
uint32_t err;
uint64_t uart_fra_multiplier;
err = inclk - (rate * div);
uart_fra_multiplier = ((uint64_t) err * 256) / (uint64_t) (rate * div);
/* Enable fractional divider and set multiplier */
LPC_SYSCTL->FRGCTRL = 0xFF | ((uart_fra_multiplier & 0xFF) << 8);
}
else {
/* Disable fractional generator and use integer divider only */
LPC_SYSCTL->FRGCTRL = 0;
}
return Chip_Clock_GetUARTBaseClockRate();
}
/* Bypass System Oscillator and set oscillator frequency range */
void Chip_Clock_SetPLLBypass(bool bypass, bool highfr)
{
uint32_t ctrl = 0;
if (bypass) {
ctrl |= (1 << 0);
}
if (highfr) {
ctrl |= (1 << 1);
}
LPC_SYSCTL->SYSOSCCTRL = ctrl;
}
/* Return system clock rate */
uint32_t Chip_Clock_GetSystemClockRate(void)
{
/* No point in checking for divide by 0 */
return Chip_Clock_GetMainClockRate() / LPC_SYSCTL->SYSAHBCLKDIV;
}