/** @file Arduino library for communicating with Modbus slaves over RS232/485 (via RTU protocol). */ /* ModbusMaster.cpp - Arduino library for communicating with Modbus slaves over RS232/485 (via RTU protocol). This file is part of ModbusMaster. ModbusMaster is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. ModbusMaster is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with ModbusMaster. If not, see . Written by Doc Walker (Rx) Copyright © 2009-2013 Doc Walker <4-20ma at wvfans dot net> */ /* _____PROJECT INCLUDES_____________________________________________________ */ #include "ModbusMaster.h" #include "crc16.h" /* _____GLOBAL VARIABLES_____________________________________________________ */ #if defined(ARDUINO_ARCH_AVR) HardwareSerial* MBSerial = &Serial; ///< Pointer to Serial class object #elif defined(ARDUINO_ARCH_SAM) UARTClass* MBSerial = &Serial; ///< Pointer to Serial class object #else //In the case of undefined Serial the code should still function // #error "This library only supports boards with an AVR or SAM processor. Please open an issue at https://github.com/4-20ma/ModbusMaster/issues and indicate which processor/platform you're using." #endif /* _____PUBLIC FUNCTIONS_____________________________________________________ */ /** Constructor. Creates class object using default serial port 0, Modbus slave ID 1. @ingroup setup */ ModbusMaster::ModbusMaster(void) { _u8SerialPort = 0; _u8MBSlave = 1; _u16BaudRate = 0; } /** Constructor. Creates class object using default serial port 0, specified Modbus slave ID. @overload void ModbusMaster::ModbusMaster(uint8_t u8MBSlave) @param u8MBSlave Modbus slave ID (1..255) @ingroup setup */ ModbusMaster::ModbusMaster(uint8_t u8MBSlave) { _u8SerialPort = 0; _u8MBSlave = u8MBSlave; _u16BaudRate = 0; } /** Constructor. Creates class object using specified serial port, Modbus slave ID. @overload void ModbusMaster::ModbusMaster(uint8_t u8SerialPort, uint8_t u8MBSlave) @param u8SerialPort serial port (Serial, Serial1..Serial3) @param u8MBSlave Modbus slave ID (1..255) @ingroup setup */ ModbusMaster::ModbusMaster(uint8_t u8SerialPort, uint8_t u8MBSlave) { _u8SerialPort = (u8SerialPort > 3) ? 0 : u8SerialPort; _u8MBSlave = u8MBSlave; _u16BaudRate = 0; } /** Initialize class object. Sets up the serial port using default 19200 baud rate. Call once class has been instantiated, typically within setup(). @ingroup setup */ void ModbusMaster::begin(void) { begin(19200); } /** Initialize class object. Sets up the serial port using specified baud rate. Call once class has been instantiated, typically within setup(). @overload ModbusMaster::begin(uint16_t u16BaudRate) @param u16BaudRate baud rate, in standard increments (300..115200) @ingroup setup */ void ModbusMaster::begin(uint16_t u16BaudRate) { // txBuffer = (uint16_t*) calloc(ku8MaxBufferSize, sizeof(uint16_t)); _u8TransmitBufferIndex = 0; u16TransmitBufferLength = 0; #if 0 switch(_u8SerialPort) { #if defined(UBRR1H) case 1: MBSerial = &Serial1; break; #endif #if defined(UBRR2H) case 2: MBSerial = &Serial2; break; #endif #if defined(UBRR3H) case 3: MBSerial = &Serial3; break; #endif case 0: default: MBSerial = &Serial; break; } #endif if(MBSerial == NULL) MBSerial = new SerialPort; if(u16BaudRate != _u16BaudRate) { _u16BaudRate = u16BaudRate; MBSerial->begin(u16BaudRate); } _idle = NULL; #if __MODBUSMASTER_DEBUG__ // pinMode(4, OUTPUT); // pinMode(5, OUTPUT); #endif } void ModbusMaster::beginTransmission(uint16_t u16Address) { _u16WriteAddress = u16Address; _u8TransmitBufferIndex = 0; u16TransmitBufferLength = 0; } // eliminate this function in favor of using existing MB request functions uint8_t ModbusMaster::requestFrom(uint16_t address, uint16_t quantity) { uint8_t read; read = 1; // krl: added this to prevent warning. This method is not called anywhere... // clamp to buffer length if (quantity > ku8MaxBufferSize) { quantity = ku8MaxBufferSize; } // set rx buffer iterator vars _u8ResponseBufferIndex = 0; _u8ResponseBufferLength = read; return read; } void ModbusMaster::sendBit(bool data) { uint8_t txBitIndex = u16TransmitBufferLength % 16; if ((u16TransmitBufferLength >> 4) < ku8MaxBufferSize) { if (0 == txBitIndex) { _u16TransmitBuffer[_u8TransmitBufferIndex] = 0; } bitWrite(_u16TransmitBuffer[_u8TransmitBufferIndex], txBitIndex, data); u16TransmitBufferLength++; _u8TransmitBufferIndex = u16TransmitBufferLength >> 4; } } void ModbusMaster::send(uint16_t data) { if (_u8TransmitBufferIndex < ku8MaxBufferSize) { _u16TransmitBuffer[_u8TransmitBufferIndex++] = data; u16TransmitBufferLength = _u8TransmitBufferIndex << 4; } } void ModbusMaster::send(uint32_t data) { send(lowWord(data)); send(highWord(data)); } void ModbusMaster::send(uint8_t data) { send(word(data)); } uint8_t ModbusMaster::available(void) { return _u8ResponseBufferLength - _u8ResponseBufferIndex; } uint16_t ModbusMaster::receive(void) { if (_u8ResponseBufferIndex < _u8ResponseBufferLength) { return _u16ResponseBuffer[_u8ResponseBufferIndex++]; } else { return 0xFFFF; } } /** Set idle time callback function (cooperative multitasking). This function gets called in the idle time between transmission of data and response from slave. Do not call functions that read from the serial buffer that is used by ModbusMaster. Use of i2c/TWI, 1-Wire, other serial ports, etc. is permitted within callback function. @see ModbusMaster::ModbusMasterTransaction() */ void ModbusMaster::idle(void (*idle)()) { _idle = idle; } /** Retrieve data from response buffer. @see ModbusMaster::clearResponseBuffer() @param u8Index index of response buffer array (0x00..0x3F) @return value in position u8Index of response buffer (0x0000..0xFFFF) @ingroup buffer */ uint16_t ModbusMaster::getResponseBuffer(uint8_t u8Index) { if (u8Index < ku8MaxBufferSize) { return _u16ResponseBuffer[u8Index]; } else { return 0xFFFF; } } /** Clear Modbus response buffer. @see ModbusMaster::getResponseBuffer(uint8_t u8Index) @ingroup buffer */ void ModbusMaster::clearResponseBuffer() { uint8_t i; for (i = 0; i < ku8MaxBufferSize; i++) { _u16ResponseBuffer[i] = 0; } } /** Place data in transmit buffer. @see ModbusMaster::clearTransmitBuffer() @param u8Index index of transmit buffer array (0x00..0x3F) @param u16Value value to place in position u8Index of transmit buffer (0x0000..0xFFFF) @return 0 on success; exception number on failure @ingroup buffer */ uint8_t ModbusMaster::setTransmitBuffer(uint8_t u8Index, uint16_t u16Value) { if (u8Index < ku8MaxBufferSize) { _u16TransmitBuffer[u8Index] = u16Value; return ku8MBSuccess; } else { return ku8MBIllegalDataAddress; } } /** Clear Modbus transmit buffer. @see ModbusMaster::setTransmitBuffer(uint8_t u8Index, uint16_t u16Value) @ingroup buffer */ void ModbusMaster::clearTransmitBuffer() { uint8_t i; for (i = 0; i < ku8MaxBufferSize; i++) { _u16TransmitBuffer[i] = 0; } } /** Modbus function 0x01 Read Coils. This function code is used to read from 1 to 2000 contiguous status of coils in a remote device. The request specifies the starting address, i.e. the address of the first coil specified, and the number of coils. Coils are addressed starting at zero. The coils in the response buffer are packed as one coil per bit of the data field. Status is indicated as 1=ON and 0=OFF. The LSB of the first data word contains the output addressed in the query. The other coils follow toward the high order end of this word and from low order to high order in subsequent words. If the returned quantity is not a multiple of sixteen, the remaining bits in the final data word will be padded with zeros (toward the high order end of the word). @param u16ReadAddress address of first coil (0x0000..0xFFFF) @param u16BitQty quantity of coils to read (1..2000, enforced by remote device) @return 0 on success; exception number on failure @ingroup discrete */ uint8_t ModbusMaster::readCoils(uint16_t u16ReadAddress, uint16_t u16BitQty) { _u16ReadAddress = u16ReadAddress; _u16ReadQty = u16BitQty; return ModbusMasterTransaction(ku8MBReadCoils); } /** Modbus function 0x02 Read Discrete Inputs. This function code is used to read from 1 to 2000 contiguous status of discrete inputs in a remote device. The request specifies the starting address, i.e. the address of the first input specified, and the number of inputs. Discrete inputs are addressed starting at zero. The discrete inputs in the response buffer are packed as one input per bit of the data field. Status is indicated as 1=ON; 0=OFF. The LSB of the first data word contains the input addressed in the query. The other inputs follow toward the high order end of this word, and from low order to high order in subsequent words. If the returned quantity is not a multiple of sixteen, the remaining bits in the final data word will be padded with zeros (toward the high order end of the word). @param u16ReadAddress address of first discrete input (0x0000..0xFFFF) @param u16BitQty quantity of discrete inputs to read (1..2000, enforced by remote device) @return 0 on success; exception number on failure @ingroup discrete */ uint8_t ModbusMaster::readDiscreteInputs(uint16_t u16ReadAddress, uint16_t u16BitQty) { _u16ReadAddress = u16ReadAddress; _u16ReadQty = u16BitQty; return ModbusMasterTransaction(ku8MBReadDiscreteInputs); } /** Modbus function 0x03 Read Holding Registers. This function code is used to read the contents of a contiguous block of holding registers in a remote device. The request specifies the starting register address and the number of registers. Registers are addressed starting at zero. The register data in the response buffer is packed as one word per register. @param u16ReadAddress address of the first holding register (0x0000..0xFFFF) @param u16ReadQty quantity of holding registers to read (1..125, enforced by remote device) @return 0 on success; exception number on failure @ingroup register */ uint8_t ModbusMaster::readHoldingRegisters(uint16_t u16ReadAddress, uint16_t u16ReadQty) { _u16ReadAddress = u16ReadAddress; _u16ReadQty = u16ReadQty; return ModbusMasterTransaction(ku8MBReadHoldingRegisters); } /** Modbus function 0x04 Read Input Registers. This function code is used to read from 1 to 125 contiguous input registers in a remote device. The request specifies the starting register address and the number of registers. Registers are addressed starting at zero. The register data in the response buffer is packed as one word per register. @param u16ReadAddress address of the first input register (0x0000..0xFFFF) @param u16ReadQty quantity of input registers to read (1..125, enforced by remote device) @return 0 on success; exception number on failure @ingroup register */ uint8_t ModbusMaster::readInputRegisters(uint16_t u16ReadAddress, uint8_t u16ReadQty) { _u16ReadAddress = u16ReadAddress; _u16ReadQty = u16ReadQty; return ModbusMasterTransaction(ku8MBReadInputRegisters); } /** Modbus function 0x05 Write Single Coil. This function code is used to write a single output to either ON or OFF in a remote device. The requested ON/OFF state is specified by a constant in the state field. A non-zero value requests the output to be ON and a value of 0 requests it to be OFF. The request specifies the address of the coil to be forced. Coils are addressed starting at zero. @param u16WriteAddress address of the coil (0x0000..0xFFFF) @param u8State 0=OFF, non-zero=ON (0x00..0xFF) @return 0 on success; exception number on failure @ingroup discrete */ uint8_t ModbusMaster::writeSingleCoil(uint16_t u16WriteAddress, uint8_t u8State) { _u16WriteAddress = u16WriteAddress; _u16WriteQty = (u8State ? 0xFF00 : 0x0000); return ModbusMasterTransaction(ku8MBWriteSingleCoil); } /** Modbus function 0x06 Write Single Register. This function code is used to write a single holding register in a remote device. The request specifies the address of the register to be written. Registers are addressed starting at zero. @param u16WriteAddress address of the holding register (0x0000..0xFFFF) @param u16WriteValue value to be written to holding register (0x0000..0xFFFF) @return 0 on success; exception number on failure @ingroup register */ uint8_t ModbusMaster::writeSingleRegister(uint16_t u16WriteAddress, uint16_t u16WriteValue) { _u16WriteAddress = u16WriteAddress; _u16WriteQty = 0; _u16TransmitBuffer[0] = u16WriteValue; return ModbusMasterTransaction(ku8MBWriteSingleRegister); } /** Modbus function 0x0F Write Multiple Coils. This function code is used to force each coil in a sequence of coils to either ON or OFF in a remote device. The request specifies the coil references to be forced. Coils are addressed starting at zero. The requested ON/OFF states are specified by contents of the transmit buffer. A logical '1' in a bit position of the buffer requests the corresponding output to be ON. A logical '0' requests it to be OFF. @param u16WriteAddress address of the first coil (0x0000..0xFFFF) @param u16BitQty quantity of coils to write (1..2000, enforced by remote device) @return 0 on success; exception number on failure @ingroup discrete */ uint8_t ModbusMaster::writeMultipleCoils(uint16_t u16WriteAddress, uint16_t u16BitQty) { _u16WriteAddress = u16WriteAddress; _u16WriteQty = u16BitQty; return ModbusMasterTransaction(ku8MBWriteMultipleCoils); } uint8_t ModbusMaster::writeMultipleCoils() { _u16WriteQty = u16TransmitBufferLength; return ModbusMasterTransaction(ku8MBWriteMultipleCoils); } /** Modbus function 0x10 Write Multiple Registers. This function code is used to write a block of contiguous registers (1 to 123 registers) in a remote device. The requested written values are specified in the transmit buffer. Data is packed as one word per register. @param u16WriteAddress address of the holding register (0x0000..0xFFFF) @param u16WriteQty quantity of holding registers to write (1..123, enforced by remote device) @return 0 on success; exception number on failure @ingroup register */ uint8_t ModbusMaster::writeMultipleRegisters(uint16_t u16WriteAddress, uint16_t u16WriteQty) { _u16WriteAddress = u16WriteAddress; _u16WriteQty = u16WriteQty; return ModbusMasterTransaction(ku8MBWriteMultipleRegisters); } // new version based on Wire.h uint8_t ModbusMaster::writeMultipleRegisters() { _u16WriteQty = _u8TransmitBufferIndex; return ModbusMasterTransaction(ku8MBWriteMultipleRegisters); } /** Modbus function 0x16 Mask Write Register. This function code is used to modify the contents of a specified holding register using a combination of an AND mask, an OR mask, and the register's current contents. The function can be used to set or clear individual bits in the register. The request specifies the holding register to be written, the data to be used as the AND mask, and the data to be used as the OR mask. Registers are addressed starting at zero. The function's algorithm is: Result = (Current Contents && And_Mask) || (Or_Mask && (~And_Mask)) @param u16WriteAddress address of the holding register (0x0000..0xFFFF) @param u16AndMask AND mask (0x0000..0xFFFF) @param u16OrMask OR mask (0x0000..0xFFFF) @return 0 on success; exception number on failure @ingroup register */ uint8_t ModbusMaster::maskWriteRegister(uint16_t u16WriteAddress, uint16_t u16AndMask, uint16_t u16OrMask) { _u16WriteAddress = u16WriteAddress; _u16TransmitBuffer[0] = u16AndMask; _u16TransmitBuffer[1] = u16OrMask; return ModbusMasterTransaction(ku8MBMaskWriteRegister); } /** Modbus function 0x17 Read Write Multiple Registers. This function code performs a combination of one read operation and one write operation in a single MODBUS transaction. The write operation is performed before the read. Holding registers are addressed starting at zero. The request specifies the starting address and number of holding registers to be read as well as the starting address, and the number of holding registers. The data to be written is specified in the transmit buffer. @param u16ReadAddress address of the first holding register (0x0000..0xFFFF) @param u16ReadQty quantity of holding registers to read (1..125, enforced by remote device) @param u16WriteAddress address of the first holding register (0x0000..0xFFFF) @param u16WriteQty quantity of holding registers to write (1..121, enforced by remote device) @return 0 on success; exception number on failure @ingroup register */ uint8_t ModbusMaster::readWriteMultipleRegisters(uint16_t u16ReadAddress, uint16_t u16ReadQty, uint16_t u16WriteAddress, uint16_t u16WriteQty) { _u16ReadAddress = u16ReadAddress; _u16ReadQty = u16ReadQty; _u16WriteAddress = u16WriteAddress; _u16WriteQty = u16WriteQty; return ModbusMasterTransaction(ku8MBReadWriteMultipleRegisters); } uint8_t ModbusMaster::readWriteMultipleRegisters(uint16_t u16ReadAddress, uint16_t u16ReadQty) { _u16ReadAddress = u16ReadAddress; _u16ReadQty = u16ReadQty; _u16WriteQty = _u8TransmitBufferIndex; return ModbusMasterTransaction(ku8MBReadWriteMultipleRegisters); } /* _____PRIVATE FUNCTIONS____________________________________________________ */ /** Modbus transaction engine. Sequence: - assemble Modbus Request Application Data Unit (ADU), based on particular function called - transmit request over selected serial port - wait for/retrieve response - evaluate/disassemble response - return status (success/exception) @param u8MBFunction Modbus function (0x01..0xFF) @return 0 on success; exception number on failure */ uint8_t ModbusMaster::ModbusMasterTransaction(uint8_t u8MBFunction) { uint8_t u8ModbusADU[256]; uint8_t u8ModbusADUSize = 0; uint8_t i, u8Qty; uint16_t u16CRC; uint32_t u32StartTime; uint8_t u8BytesLeft = 8; uint8_t u8MBStatus = ku8MBSuccess; // assemble Modbus Request Application Data Unit u8ModbusADU[u8ModbusADUSize++] = _u8MBSlave; u8ModbusADU[u8ModbusADUSize++] = u8MBFunction; switch(u8MBFunction) { case ku8MBReadCoils: case ku8MBReadDiscreteInputs: case ku8MBReadInputRegisters: case ku8MBReadHoldingRegisters: case ku8MBReadWriteMultipleRegisters: u8ModbusADU[u8ModbusADUSize++] = highByte(_u16ReadAddress); u8ModbusADU[u8ModbusADUSize++] = lowByte(_u16ReadAddress); u8ModbusADU[u8ModbusADUSize++] = highByte(_u16ReadQty); u8ModbusADU[u8ModbusADUSize++] = lowByte(_u16ReadQty); break; } switch(u8MBFunction) { case ku8MBWriteSingleCoil: case ku8MBMaskWriteRegister: case ku8MBWriteMultipleCoils: case ku8MBWriteSingleRegister: case ku8MBWriteMultipleRegisters: case ku8MBReadWriteMultipleRegisters: u8ModbusADU[u8ModbusADUSize++] = highByte(_u16WriteAddress); u8ModbusADU[u8ModbusADUSize++] = lowByte(_u16WriteAddress); break; } switch(u8MBFunction) { case ku8MBWriteSingleCoil: u8ModbusADU[u8ModbusADUSize++] = highByte(_u16WriteQty); u8ModbusADU[u8ModbusADUSize++] = lowByte(_u16WriteQty); break; case ku8MBWriteSingleRegister: u8ModbusADU[u8ModbusADUSize++] = highByte(_u16TransmitBuffer[0]); u8ModbusADU[u8ModbusADUSize++] = lowByte(_u16TransmitBuffer[0]); break; case ku8MBWriteMultipleCoils: u8ModbusADU[u8ModbusADUSize++] = highByte(_u16WriteQty); u8ModbusADU[u8ModbusADUSize++] = lowByte(_u16WriteQty); u8Qty = (_u16WriteQty % 8) ? ((_u16WriteQty >> 3) + 1) : (_u16WriteQty >> 3); u8ModbusADU[u8ModbusADUSize++] = u8Qty; for (i = 0; i < u8Qty; i++) { switch(i % 2) { case 0: // i is even u8ModbusADU[u8ModbusADUSize++] = lowByte(_u16TransmitBuffer[i >> 1]); break; case 1: // i is odd u8ModbusADU[u8ModbusADUSize++] = highByte(_u16TransmitBuffer[i >> 1]); break; } } break; case ku8MBWriteMultipleRegisters: case ku8MBReadWriteMultipleRegisters: u8ModbusADU[u8ModbusADUSize++] = highByte(_u16WriteQty); u8ModbusADU[u8ModbusADUSize++] = lowByte(_u16WriteQty); u8ModbusADU[u8ModbusADUSize++] = lowByte(_u16WriteQty << 1); for (i = 0; i < lowByte(_u16WriteQty); i++) { u8ModbusADU[u8ModbusADUSize++] = highByte(_u16TransmitBuffer[i]); u8ModbusADU[u8ModbusADUSize++] = lowByte(_u16TransmitBuffer[i]); } break; case ku8MBMaskWriteRegister: u8ModbusADU[u8ModbusADUSize++] = highByte(_u16TransmitBuffer[0]); u8ModbusADU[u8ModbusADUSize++] = lowByte(_u16TransmitBuffer[0]); u8ModbusADU[u8ModbusADUSize++] = highByte(_u16TransmitBuffer[1]); u8ModbusADU[u8ModbusADUSize++] = lowByte(_u16TransmitBuffer[1]); break; } // append CRC u16CRC = 0xFFFF; for (i = 0; i < u8ModbusADUSize; i++) { u16CRC = crc16_update(u16CRC, u8ModbusADU[i]); } u8ModbusADU[u8ModbusADUSize++] = lowByte(u16CRC); u8ModbusADU[u8ModbusADUSize++] = highByte(u16CRC); u8ModbusADU[u8ModbusADUSize] = 0; // flush receive buffer before transmitting request while (MBSerial->read() != -1); #if 0 // transmit request for (i = 0; i < u8ModbusADUSize; i++) { #if defined(ARDUINO) && ARDUINO >= 100 MBSerial->write(u8ModbusADU[i]); #else MBSerial->print(u8ModbusADU[i], BYTE); #endif } #else MBSerial->write((char *)u8ModbusADU, u8ModbusADUSize); #endif //printf("TX: %02X\n", u8ModbusADU[0]); u8ModbusADUSize = 0; MBSerial->flush(); // flush transmit buffer // loop until we run out of time or bytes, or an error occurs u32StartTime = millis(); while (u8BytesLeft && !u8MBStatus) { if (MBSerial->available()) { #if __MODBUSMASTER_DEBUG__ digitalWrite(4, true); #endif u8ModbusADU[u8ModbusADUSize++] = MBSerial->read(); u8BytesLeft--; #if __MODBUSMASTER_DEBUG__ digitalWrite(4, false); #endif } else { #if __MODBUSMASTER_DEBUG__ digitalWrite(5, true); #endif if (_idle) { _idle(); } #if __MODBUSMASTER_DEBUG__ digitalWrite(5, false); #endif } // evaluate slave ID, function code once enough bytes have been read if (u8ModbusADUSize == 5) { // verify response is for correct Modbus slave if (u8ModbusADU[0] != _u8MBSlave) { u8MBStatus = ku8MBInvalidSlaveID; break; } // verify response is for correct Modbus function code (mask exception bit 7) if ((u8ModbusADU[1] & 0x7F) != u8MBFunction) { u8MBStatus = ku8MBInvalidFunction; break; } // check whether Modbus exception occurred; return Modbus Exception Code if (bitRead(u8ModbusADU[1], 7)) { u8MBStatus = u8ModbusADU[2]; break; } // evaluate returned Modbus function code switch(u8ModbusADU[1]) { case ku8MBReadCoils: case ku8MBReadDiscreteInputs: case ku8MBReadInputRegisters: case ku8MBReadHoldingRegisters: case ku8MBReadWriteMultipleRegisters: u8BytesLeft = u8ModbusADU[2]; break; case ku8MBWriteSingleCoil: case ku8MBWriteMultipleCoils: case ku8MBWriteSingleRegister: case ku8MBWriteMultipleRegisters: u8BytesLeft = 3; break; case ku8MBMaskWriteRegister: u8BytesLeft = 5; break; } } if ((millis() - u32StartTime) > ku16MBResponseTimeout) { u8MBStatus = ku8MBResponseTimedOut; } } // verify response is large enough to inspect further if (!u8MBStatus && u8ModbusADUSize >= 5) { // calculate CRC u16CRC = 0xFFFF; for (i = 0; i < (u8ModbusADUSize - 2); i++) { u16CRC = crc16_update(u16CRC, u8ModbusADU[i]); } // verify CRC if (!u8MBStatus && (lowByte(u16CRC) != u8ModbusADU[u8ModbusADUSize - 2] || highByte(u16CRC) != u8ModbusADU[u8ModbusADUSize - 1])) { u8MBStatus = ku8MBInvalidCRC; } } // disassemble ADU into words if (!u8MBStatus) { // evaluate returned Modbus function code switch(u8ModbusADU[1]) { case ku8MBReadCoils: case ku8MBReadDiscreteInputs: // load bytes into word; response bytes are ordered L, H, L, H, ... for (i = 0; i < (u8ModbusADU[2] >> 1); i++) { if (i < ku8MaxBufferSize) { _u16ResponseBuffer[i] = word(u8ModbusADU[2 * i + 4], u8ModbusADU[2 * i + 3]); } _u8ResponseBufferLength = i; } // in the event of an odd number of bytes, load last byte into zero-padded word if (u8ModbusADU[2] % 2) { if (i < ku8MaxBufferSize) { _u16ResponseBuffer[i] = word(0, u8ModbusADU[2 * i + 3]); } _u8ResponseBufferLength = i + 1; } break; case ku8MBReadInputRegisters: case ku8MBReadHoldingRegisters: case ku8MBReadWriteMultipleRegisters: // load bytes into word; response bytes are ordered H, L, H, L, ... for (i = 0; i < (u8ModbusADU[2] >> 1); i++) { if (i < ku8MaxBufferSize) { _u16ResponseBuffer[i] = word(u8ModbusADU[2 * i + 3], u8ModbusADU[2 * i + 4]); } _u8ResponseBufferLength = i; } break; } } _u8TransmitBufferIndex = 0; u16TransmitBufferLength = 0; _u8ResponseBufferIndex = 0; return u8MBStatus; }